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Single Linear Regression Review

1. (Challenge, Linear Regression as Line of Best Fit). Recall that our single linear regression model,
defined in terms of the “line of best fit” is an approximation of the true conditional mean rather than
the true conditional mean. However, in the case that X is binary, (X ∈ {0, 1}), the parameters β0 and
β1 from the linear model

Y = β0 + β1X + ε, E[ε] = E[εX] = 0.

exactly describe the conditional mean. In this exercise we will show this.

(a) Use the following equalities, true for a random variable X that takes values X ∈ {0, 1}, to get an
expression for Cov(X,Y ).

E[Y ] = E[Y |X = 0] Pr(X = 0) + E[Y |X = 1] Pr(X = 1)

E[X] = Pr(X = 1)

E[XY ] = E[Y |X = 1] Pr(X = 1)

It may be helpful to let p = Pr(X = 1) and note that Pr(X = 0) = 1− p.

Answer: Let p = Pr(X = 1). Using the equalities:

E[X] = p

E[Y ] = E[Y |X = 1]p+ E[Y |X = 0](1− p)
E[Y X] = E[Y |X = 1]p

we can write

Cov(X,Y ) = E[Y X]− E[X]E[Y ]

= E[Y |X = 1]p− p
(
E[Y |X = 1]p+ E[Y |X = 0](1− p)

)
= E[Y |X = 1]p− p

(
E[Y |X = 1]p+ E[Y |X = 0]− E[Y |X = 0]p

)
= E[Y |X = 1]p− p2E[Y |X = 1]︸ ︷︷ ︸

pull out p

− pE[Y |X = 0] + E[Y |X = 0]p2︸ ︷︷ ︸
pull out p

= p
(
E[Y |X = 1]− pE[Y |X = 1]

)︸ ︷︷ ︸
pull out E[Y |X=1]

−p
(
E[Y |X = 0]− pE[Y |X = 0]

)︸ ︷︷ ︸
pull out E[Y |X=0]

= p(1− p)E[Y |X = 1]− p(1− p)E[Y |X = 0]

Any answer after line 2 would be accepted. Just important to set up for part (b)

(b) Use the following expression, true for a random variable X that takes values X ∈ {0, 1}, to get a

simplified expression for β1 = Cov(X,Y )
Var(X) :

Var(X) = Pr(X = 1) Pr(X = 0).
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Answer: Using the definition p = Pr(X = 1) and noting that Pr(X = 0) = 1−Pr(X − 1) = 1− p,
we can write Var(X) = p(1− p). Using our answer from part (a), we can simplify:

β1 =
Cov(X,Y )

Var(X)
=
p(1− p)E[Y |X = 1]− p(1− p)E[Y |X = 0]

p(1− p)
= E[Y |X = 1]− E[Y |X = 0]

(c) Use the expressions for E[Y ] and E[X] above, as well as the expression for β1 that you derived in
part (b) to get a simplified expression for

β0 = E[Y ]− β1E[X].

Answer: Using β1 = E[Y |X = 1] − E[Y |X = 0], E[X] = p, and E[Y ] = pE[Y |X = 1] + (1 −
p)E[Y |X = 0] :

β0 = E[Y ]− β1E[X] = pE[Y |X = 1] + (1− p)E[Y |X = 0]︸ ︷︷ ︸
E[Y ]

− p(E[Y |X = 1]− E[Y |X = 0])︸ ︷︷ ︸
β1E[X]

= (1− p)E[Y |X = 0] + pE[Y |X = 0]

= E[Y |X = 0]

(d) Use the expressions for β0 and β1 from above as well as the linear model:

Y = β0 + β1X + ε.

What is the predicted value of Y when X = 0? What about when X = 1?

Answer: The predicted value of Y when X = 0 is β0 = E[Y |X = 0]. The predicted value of Y
when X = 1 is β0 + β1 = E[Y |X = 1]. While normally the line of best fit does not coincide with
the true conditional expectation, in this case it does.

Multiple Linear Regression

1. (Single Hypothesis Testing). Consider the linear model

Y = β0 + β1X1 + β2X2 + ε.

We want to test the hypotheses:

H0 : β2 = 0 vs. H1 : β2 6= 0

at level α = 0.05.

(a) Suppose on a sample of size n = 100 we find that σ2
ε = 400, σ2

X2
= 200, β̂2 = 1, and ρ212 = 0.5,

where we recall that ρ12 is the sample correlation coeffecient between X1 and X2. Conduct the
hypothesis test in the setup of this problem.

Answer: We first use this information to calculate

σ̂2
β2

=
σ2
ε

(1− ρ12)2σ2
X

= 4 =⇒ σβ2
/
√
n = 2/10 = 0.2.

We can then construct our test statistic

t∗ =
β̂2 − 0√
β2/
√
n

=
1

0.2
= 5.

Since this test statistic is larger than z1−α/2 = 1.96 we reject the null hypothesis and conclude in
favor of the alternative that β2 6= 0.
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(b) Give an intuitive explanation for why the variance of β̂1 is increasing with the correlation between
X1 and X2.

Answer: Recall that in a multiple regression model, we interpret the coeffecient β1 as the (approx-
imate) association between X1 and Y while holding X2 constant. If,. in our data, X1 and X2 are
highly correlated, it is difficult for us to parse out this effect since whenever X1 moves, X2 tends
to move too. This makes it difficult to distinguish the effect of X1 on Y from the effect of X2

on Y and reduces our certainty in what the true parameter β1 is. The variance of our estimator
β̂1 can be interpreted as a measure of our uncertainty about the true parameter β1, so a high
correlation will increase the variance of β̂1. (Variations on this answer will be accepted, the main
point is to remark that it is difficult to parse out the effect of X1 on Y from the effect on X2 on
Y ).

2. (Single Hypothesis Testing). Suppose we are interested in exploring the relationship between income,
years of education, and experience. To investigate this relationship, we consider the following model:

ln(Income) = β0 + β1Edu + β2Exper + ε.

After fitting this model with sample size n = 100 we find the following variance covariance matrix.

Cov(β̂) =

β̂0 β̂1 β̂2 β̂0 0.05 0.25 0.16

β̂1 0.25 0.08 0.1

β̂2 0.16 0.1 0.36

We want to prove that returns to education are larger than returns to experience.

(a) Formally state, in terms of parameters of the model, the null and alternative hypotheses associated
with this test (Hint: Recall the null is that returns to education are smaller than returns to
experience, our goal will be to provide evidence against this null hypothesis).

Answer: The null hypothesis can be expressed as H0 : β1 ≤ β2 ⇐⇒ β1−β2 ≤ 0. The alternative
hypothesis is then H1 : β1 > β2 ⇐⇒ β1 − β2 > 0.

(b) Suppose we find that β̂1 = 1.1 and β̂2 = 0.7. What is the result of running the hypothesis test
specified in part (a) at level α = 0.05? (Hint: It may be useful to recall that we can write
X − Y = X + (−Y )).

Answer: We will consider the linear combination of parameters λ = β1 − β2 and test the null
hypothesis H0 : λ ≤ 0 against the one sided alternative H1 : λ > 0. Using the covariance matrix
above, we find that

Var(λ̂) = Var(β̂1) + Var(β̂2)− 2 Cov(β̂1, β̂2) = 0.08 + 0.36− 2 · 0.1 = 0.24.

Then we can construct our test statistic

t∗ =
λ̂− 0√
Var(λ̂)

=
0.4

0.489
= 0.8164.

Given this, since t∗ ≤ z1−α = 1.64, we fail to reject this null hypothesis. We cannot reject the
hypothesis that returns to experience are higher than returns to education.

(c) Keeping all other values the same, what is the largest value of Cov(β̂1, β̂2) for which we would
reject this null hypothesis? (This may be larger or smaller than the existing covariance).

Answer: So, the correct answer to this is to notice that the variance of λ̂ is decreasing as the
Covariance is increasing. For small variances we reject the null hypothesis. Our only restriction
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is that the variance needs to positive. So, we can take 2 Cov(β̂1, β̂2) < Var(β̂0) + Var(β̂1) =⇒
Cov(β̂1, β̂2) < 0.22.

However, in office hours, I was confused and mentioned that you can find an upper bound by
inverting the test statistic (using t∗ > 1.64). This gives a lower bound on rejecting the null

hypothesis Cov(β̂0, β̂1) > 0.19. This answer will also be accepted as well as an answer that claims
that the upper bound is unattainable.

3. (Multiple Hypotheses Testing). Suppose a hamburger restaurant is investigating the relationship be-
tween the number of burgers it sells in a month, the price of a burger in dollars, and the money it
spends on advertising in tens of thousands of dollars, and whether or not it is open on Saturdays.

Consider the following unrestricted model:

Sales = β0 + β1Price + β2Advert + β3Saturdays + ε.

And the restricted model

Sales = β0 + β1(Advert + Saturdays− Price) + ε.

(a) In terms of the unrestricted model parameters, state the null hypothesis being imposed by the
restricted model (something like H0 : β1 = 2β2 = 20β3).

Answer: The restricted model is imposing that a ten thousand dollar increase in advertising is
associated with the same change in sales as being open on Saturday or a one dollar decrease in
price. Formally, we can write this as:

H0 : −β1 = β2 = β3.

(b) Interpret this null hypothesis in context.

Answer: See above. A correct answer should include units. It is ok to use language like “the effect
of. . . ”

(c) Suppose n = 104 and, after estimating both the restricted and unrestricted models, we find that
SSER = 1000, SSEU = 800. Use this information the compute the F-statistic.

Answer: First, note that n−p−1 = 100 and J = 2 (count the equality signs in the null hypothesis).
Using this, we compute F ∗:

F ∗ =
(SSER − SSEU)/J

SSEU/(n− p− 1)
=

(1000− 800)/2

800/100
=

100

8
= 12.5.

(d) Using the command pf(F ∗, J, n− p− 1) in R, compute the p-value. Recall that:

Pr
(
F (J, n− p− 1) ≤ c

)
= pf(c, J, n− p− 1).

Answer: We can calculate the p-value via p = 1− pf(F ∗, J, n− p− 1) = 1− pf(12.5, 2, 100) ≈ 0.

(e) Using this p-value report the result of the test at level α = 0.05. Interpret the test result in the
context of the problem.

Answer: Since the p-value is less than α = 0.05 we reject this null hypothesis. We conclude in
favor of the alternative hypothesis, which is to say that either a one dollar decrease in price is
associated with a different change in sales than a ten thousand dollar increase in advertising or
a ten thousand dollar increase in advertising is associated with a different change in sales than
being open Saturday. (There are many ways to state this, just important that you note that at
least one of two restrictions is violated and units are used).
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4. (Polynomial Modeling). When estimating wage equations, we expect that young, inexperienced workers
will have relatively low wages and that with additional experience their wages will rise, but then begin
to decline after middle age, as the worker nears retirement. This life cycle pattern of wages can be
captured by introducing experience and experience squared to explain the level of wages. If we also
include years of education, we have the equation

Wages = β0 + β1Educ + β2Exper + β3Exper2 + ε.

(a) In terms of the parameters of this model, what is the expected marginal effect of experience on
wages?

Answer: Taking derivatives gives

∂Ŷ

∂Exper
= β2 + 2β3Exper.

(b) Given the explanation above, what signs do we expect on the coeffecients β2 and β3?

Answer: Since we expect returns on experience to be positive to begin with, but then diminish as
experience increases, we would expect β2 > 0 and β3 < 0.

(c) Suppose we estimate that β̂2 = 20 and β̂3 = −0.6. After how many years of experience do we
esimate that wages will start to decline?

Answer: Setting the marginal effect equal to zero and solving for experience gives

20− 2 · 0.6Exper = 0 =⇒ Exper =
20

1.2
= 16.6666.

An answer of 16.6666, 16, or 17, would be accepted.

5. (Omitted Variables Bias). Consider the two models:

Y = β0 + β1X1 + ε

Y = β◦0 + β◦1X1 + β◦2X2 + ε◦.

Recall that the omitted variables bias is the difference between β1 and β◦1 , OVB = β1 − β◦1 .

(a) From lecture, give the formula for the omitted variables bias.

Answer: From lecture:

OVB = β1 − β◦1 = β◦2
Cov(X1, X2)

Var(X1)
.

(b) Suppose that X2 has a negative relationship with the outcome and X1 and X2 are negatively
related. What is the sign of the omitted variables bias? Which should be larger, β1 or β◦1?

Answer: Using the formula above and the fact that a negative times a negative is positve, we find
that OVB > 0. This means that β1 > β◦1 .

(c) (Challenge). Give an example that illustrates this. That is, come up with an example in which
X1 and X2 are negatively related and X2 is negatively associated with the outcome. Then, within
the context of the example, give an explanation for why excluding X2 from your model would
make the coeffecient on X1 either larger or smaller. This explanation should not just use the
omitted variables formula and rather provide reasoning within the context of the example.

Answer: Many possible answers. A good answer 1) clearly explains why the covariance should
be negative, 2) clearly explains why the association between X2 and Y should be negative, 3)
explains, within the context of the example and without just using the formula, why this would
lead to a larger slope parameter on the model that just includes X1 and excludes X2.


